Lagrange Interpolation and Finite Element Superconvergence

نویسنده

  • BO LI
چکیده

Abstract. We consider the finite element approximation of the Laplacian operator with the homogeneous Dirichlet boundary condition, and study the corresponding Lagrange interpolation in the context of finite element superconvergence. For ddimensional Qk-type elements with d ≥ 1 and k ≥ 1, we prove that the interpolation points must be the Lobatto points if the Lagrange interpolation and the finite element solution are superclose in H norm. For d-dimensional Pk-type elements, we consider the standard Lagrange interpolation—the Lagrange interpolation with interpolation points being the principle lattice points of simplicial elements. We prove for d ≥ 2 and k ≥ d+1 that such interpolation and the finite element solution are not superclose in both H and L norms, and that not all such interpolation points are superconvergence points for the finite element approximation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Stabilized Mixed Finite Element Method for Thin Plate Splines Based on Biorthogonal Systems

The thin plate spline is a popular tool for the interpolation and smoothing of scattered data. In this paper we propose a novel stabilized mixed finite element method for the discretization of thin plate splines. The mixed formulation is obtained by introducing the gradient of the smoother as an additional unknown. Working with a pair of bases for the gradient of the smoother and the Lagrange m...

متن کامل

Superconvergence for Second Order Triangular Mixed and Standard Finite Elements

JYV ASKYL A 1996 2 Superconvergence for second order triangular mixed and standard nite elements. Abstract In this paper we will prove that both the second order Raviart-Thomas type mixed nite elements and the quadratic standard nite elements on regular and uniform triangular partitions, are superconvergent with respect to Fortin interpolation. This result implies the superconvergence for quadr...

متن کامل

Superconvergence of a Discontinuous Galerkin Method for Fractional Diffusion and Wave Equations

We consider an initial-boundary value problem for ∂tu−∂ t ∇2u = f(t), that is, for a fractional diffusion (−1 < α < 0) or wave (0 < α < 1) equation. A numerical solution is found by applying a piecewise-linear, discontinuous Galerkin (DG) method in time combined with a piecewiselinear, conforming finite element method in space. The time mesh is graded appropriately near t = 0, but the spatial m...

متن کامل

Superconvergence of mixed finite element methods for optimal control problems

In this paper, we investigate the superconvergence property of the numerical solution of a quadratic convex optimal control problem by using rectangular mixed finite element methods. The state and co-state variables are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions. Some realistic regularity a...

متن کامل

Asymptotic Expansion and Superconvergence for Triangular Linear Finite Element on a Class of Typical Mesh

In this paper, we present a new approach to obtain the asymptotic expansion and superconvergence for the linear element on Union Jack mesh. First, we construct a generalized interpolation function and its discrete harmonic extension by using the energy embedding method and the method of separation of variables. Then, we present elaborate estimates for the generalized interpolation function and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004